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Abstract—We investigate the problem of distribution simu-
lation under local differential privacy: Alice and Bob observe
sequences Xn and Y n respectively, where Y n is generated by a
non-interactive ε-locally differentially private (LDP) mechanism
from Xn. The goal is for Alice and Bob to output U and V from
a joint distribution that is close in total variation distance to a
target distribution PUV . As the main result, we show that such
task is impossible if the hypercontractivity coefficient of PUV

is strictly bigger than
(

eε−1
eε+1

)2

. The proof of this result also
leads to a new operational interpretation of LDP mechanisms:
if Y is an output of an ε-LDP mechanism with input X , then
the probability of correctly guessing f(X) given Y is bigger
than the probability of blind guessing only by eε−1

eε+1
, for any

deterministic finitely-supported function f . If f(X) is continuous,
then a similar result holds for the minimum mean-squared error
in estimating f(X) given Y .

I. INTRODUCTION

A major challenge in today’s machine learning applications
is to learn from data as accurately as possible while maintain-
ing the privacy of individuals from whom data is obtained.
In such applications, privacy is often quantified in terms of
differential privacy [1], that comes in several variants such as
approximate DP [2] and Rényi DP [3]. Arguably, the most
stringent variant is local DP (LDP), (partially) introduced by
Warner [4] in 1960’s and formally defined around forty years
later in [5, 6]. Informally speaking, a mechanism (or a channel)
is locally differentially private if it’s output distribution does
not vary significantly by changing the inputs. More precisely,
a mechanism is said to be ε-locally differentially private (or
ε-LDP for short) if the log-likelihood ratio of the output for
two different input is smaller than ε almost surely.

Suppose Alice and Bob observe samples Xn =
(X1, X2, . . . , Xn) and Y n respectively, where {(Xi, Yi)}ni=1

are drawn i.i.d. from PXY . The goal is for Alice and Bob
to apply some (possibly randomized) function to their ob-
servation and generate respectively Un and Vn, whose joint
distribution asymptotically approximates a given PUV on
U × V . This problem, formally referred to as distribution
simulation, was initiated by Gács and Körner [7] and Wyner
[8], and further studied more recently by Kamath and Anan-
tharam [9]. Distribution simulation also generalizes correlation
distillation [10, 11] in which the goal is to maximize the
probability of agreement between Alice and Bob. Despite all
progresses, characterizing families of distributions PUV that

Fig. 1. Alice observes Xn and she applies a locally differentially
private mechanism K to her observation to generate Y n. After
transmitting Y n to a distant party, say, Bob, the goal is for Alice
and Bob to generate U and V respectively such that (U, V ) is drawn
from a target distribution PUV .

can be simulated by a given PXY remains challenging, even
when PXY and PUV are extremely simple. For instance, for
PXY being uniform on {(0, 0), (0, 1), (1, 0)} and U and V
being uniform random variables on {−1,+1} with correlation,
say, 0.49, it is still open whether PUV can be simulated using
PXY .

In this work, we study the distribution simulation under
local differential privacy constraint. That is, we assume each
Yi, i ∈ [n] := {1, . . . , n}, is the output of an ε-LDP mecha-
nism K with the input Xi. In information-theory parlance, Xn

and Y n are the input and output of the memoryless channel
PY n|Xn(yn|xn) =

∏n
i=1 K(yi|xi) and K is assumed to be ε-

LDP. This goal is depicted in Fig. 1. In the DP literature, this
setting is usually called non-interactive mechanism [12].

As the main contribution, we derive a nearly tight upper
bound for the hypercontractivity coefficient [13] of input
and output of a locally differentially private mechanism. For
any joint distribution PXY , the hypercontractivity coefficient
s(X;Y ) is defined as the supremum of D(QY ‖PY )

D(QX‖PX) , where the
supremum is taken over all distributions QX on X , not equal
to PX , and QY is the corresponding distribution on Y . This
quantity plays an important role in analysis, probability theory,
information theory, and discrete Fourier analysis. Interested
readers can refer to [10, 11, 14] for a brief summary of their
development and impact in these areas. In Theorem 1, we show
that if X and Y are input and output of an ε-LDP mechanism,
then s(X;Y ) ≤ Υ2

ε, where Υε := eε−1
eε+1 . Combining this result

with some well-known properties of s(X;Y ), we then present
an impossibility result for the distribution simulation under
local differential privacy in terms of the hypercontractivity
coefficient. We demonstrate that if S(U ;V ) > Υε, then the



simulation of PUV using Xn and Y n is impossible.
We instantiate our result for an important and insightful

joint distribution, namely, U and V are uniform on {−1,+1}
with correlation E[UV ] = ρ. This distribution is called doubly
symmetric binary source and is denoted by DSBS(ρ). Notice
that ρ = 1 if and only if U = V and ρ = 0 if and only if
U and V are independent. Thus, ρ can be viewed as a proxy
of how likely Alice and Bob can agree on a single bit, that
is, Pr(U = V ) = 1

2 + ρ
2 . Gács and Körner [7] characterized

a necessary and sufficient condition on PXY for simulating
DSBS(1). Applying their result, one can directly show that
ρ < 1 under non-trivial privacy constraint ε < ∞. Thus, a
natural question is: What is the maximum correlation ρ < 1
such that DSBS(ρ) can be simulated by the input and output
of an arbitrary ε-LDP mechanism? We show that the answer
to this question is eε−1

eε+1 and demonstrate that it is tight.
As a side result, we also present a new operational interpre-

tation of the statistical guarantees provided by local differential
privacy. We show that if X and Y are input and output of
an ε-LDP mechanism, then reconstructing any deterministic
function of X is statistically nearly the same with or without
observing Y for reasonably small ε. More specifically, we
show that the probability of correctly guessing f(X) for any
deterministic finitely-supported function f given Y is upper
bounded by Υε + maxa Pr(f(X) = a), where the second
term corresponds to the blind guessing. We prove this result
by connecting s(X;Y ) with the Rényi’s maximal correlation
[15], which is known to be closely related to the statistical
guessing efficiency [16]. If f(X) is continuous, then the
same interpretation holds: the minimum mean-squared error
(MMSE) in estimating f(X) given Y is slightly smaller than
the error corresponding to blind estimation. See Section IV
for more details. These result, in addition to the original
interpretation of DP in [17], rigorously justify the resulting
privacy guarantees, making a better case for adoption of DP
technologies in industry.
Notation. For a random variable X , we write PX and X for
its distribution (i.e., X ∼ PX ) and its alphabet, respectively.
For any set A, we denote by P(A) the set of all probability
distributions on A. Given two sets X and Y , a mechanism
(i.e., channel) K is a mapping from X to P(Y) given by
x 7→ K(·|x). Given P ∈ P(X ) and a mechanism K : X →
P(Y), we let P ⊗ K and PK denote the corresponding joint
distribution PXY (x, y) = P (x)K(y|x) and output distribution
PK(·) =

∫
K(·|x)P (dx), respectively. We use Bernoulli(α)

for the Bernoulli distribution on {−1,+1} with parameter α
and BSC(ω) for the binary symmetric channel with crossover
probability ω. Also, we write DSBS(ρ) for the joint distribu-
tion Bernoulli( 1

2 )⊗ BSC( 1−ρ
2 ).

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first give a set of definitions that are
required for the subsequent sections and also describe the
problem formulation.

A. f -Divergences

Given a convex function f : (0,∞)→ R such that f(1) =
0, the f -divergence between two probability measures P � Q
is defined as [18, 19]

Df (P‖Q) := EQ
[
f
(dP

dQ
)]
. (1)

Due to convexity of f , we have Df (P‖Q) ≥ f(1) = 0. If,
furthermore, f is strictly convex at 1, then equality holds if
and only P = Q. Examples of f -divergences needed in this
paper includes:
• KL-divergence D(P‖Q) := Df (P‖Q) for f(t) = t log t,
• Total-variation distance TV(P,Q) := Df (P‖Q) for 1

2 |t−
1|,

• Squared Hellinger distance H2(P,Q) := Df (P‖Q) for
f(t) = (1−

√
t)2,

• Eγ-divergence Eγ(P‖Q) := Df (P‖Q) for f(t) = (t −
γ)+ for some γ ≥ 1, where (a)+ := max{a, 0}.

All f -divergences are known to satisfy the data-processing
inequality. Consequently, for any channel K : X 7→ P(Y), we
have Df (PK‖QK) ≤ Df (P‖Q) for any pair of distributions
(P,Q).

B. Local Differential Privacy

Definition 1 (Local differential privacy [4, 5]). A mechanism
K : X → P(Y) is said to be ε-locally differentially private
(or ε-LDP for short), for ε ≥ 0, if

K(A|x) ≤ eεK(A|x′),

for any measurable set A ⊆ Y and any arbitrary pair of
inputs x, x′ ∈ X . Let Qε denote the collection of all ε-LDP
mechanisms.

Invoking the definition of Eγ-divergence, one can equiva-
lently characterize LDP mechanisms as follows:

K ∈ Qε ⇐⇒ sup
x,x′∈X

Eeε(K(·|x)‖K(·|x′)) = 0. (2)

This equivalent expression has been instrumental in proving
several new results in differential privacy literature [20–25].
The smaller the value of ε is, the stronger privacy guarantee is
achieved. In particular, any 0-LDP channel would necessarily
generate outputs independent of its input.

C. Problem Formulation

Given independent samples Xn from P , one can construct
Y n by applying K an ε-LDP mechanism n times indepen-
dently, i.e., Yi is the output of the channel K with Xi as the
input for i ∈ [n] := {1, . . . , n}. We wish to determine how
well a target distribution PUV ∈ P(U×V) can be simulated by
two parties, Alice an Bob, observing Xn and Y n separately.
This objective can be formally defined as follows.

Definition 2 (distribution simulation [9]). Given observation
(Xn, Y n)

iid∼ PXY and a target joint distribution PUV ∈
P(U × V), we say that the simulation of PUV using PXY



is possible if there exists a sequence of (possibly randomized)
functions {ϕn}n∈N and {ψn}n∈N:

ϕn : Xn → U , ψn : Yn → V,

such that Un := ϕn(Xn) and Vn := ψn(Y n) asymp-
totically approximate U and V in distribution, that is,
TV(PUV , PUnVn

)→ 0 as n→∞.

According to this definition, the task of simulating PUV
by Alice and Bob is performed as follows: Alice applies
some function to her observations Xn to generate Un and
Bob applies another function to Y n to generate Vn such that
(Un, Vn) can asymptotically approximate (U, V ).

Of particular interest is when PUV is the distribution where
U and V are marginally uniform over {−1,+1} and U is a ρ-
correlated copy of V , i.e., E[UV ] = ρ. This joint distribution,
often referred to as doubly symmetric binary source and
denoted by DSBS(ρ), can be realized by U ∼ Bernoulli( 1

2 )
and V being the output of BSC( 1−ρ

2 ). We seek to answer the
following question:
Question: What is the maximum ρ such that the simulation
of DSBS(ρ) using P ⊗ K with P ∈ P(X ) and K ∈ Qε is
possible?

III. MAIN RESULTS

In this section, we develop a machinery in terms of the
hypercontractivity coefficient to answer the question posed in
the previous section. In order to expound the main result and
proof technique we need the following definition.

Definition 3 ([13]). Given (X,Y ) ∼ P ⊗ K with P ∈ P(X )
and K : X → P(Y), we define their hypercontractivity
coefficient as

s(X;Y ) := sup
Q∈P(X )
Q6=P

D(PK‖QK)

D(P‖Q)
,

where the supremum is taken over all distributions Q ∈ P(X )
not equal to P .

Hypercontractivity coefficient exhibits two important prop-
erties. First, it is known that it satisfies the data processing
inequality, that is [9, Appendix B]

s(U ;V ) ≤ s(X;Y ), (3)

for any pair of random variables (U, V ) such that we have the
Markov chain U −X−Y −V . Second, if (Xi, Yi) for i ∈ [n]
are independent, then [26]

s(Xn;Y n) = max
i∈[n]

s(Xi;Yi). (4)

These two properties are essential to obtain a necessary and
sufficient condition for the set of all joint distributions PUV
that can be simulated by PXY . In fact, it has been shown [9]
that PUV can be simulated using PXY if and only if

s(U ;V ) ≤ s(X;Y ). (5)

Therefore, an upper bound on s(X;Y ) leads to an upper
bound on the hypercontractivity coefficient of PUV than can
be simulated by PXY . In the following theorem, we present
an upper bound for s(X;Y ) when X and Y are input and
output of an ε-LDP mechanism, respectively.

Theorem 1. Let (X,Y ) ∼ P⊗K with P ∈ P(X ) and K ∈ Qε.
Then, we have

s(X;Y ) ≤ Υ2
ε, (6)

where
Υε :=

eε − 1

eε + 1
. (7)

Proof Sketch. We provide a proof sketch for a slightly stronger
result. For any Markov kernel K : X → P(Y), define

η(K) := sup
P
s(X;Y ) (8)

= sup
P,Q∈P(X )
P 6=Q

D(PK‖QK)

D(P‖Q)
, (9)

which is sometimes called the contraction coefficient of K
[27, 28]. With this definition in place, we prove that η(K) ≤
Υ2
ε for any K ∈ Qε, thus showing that (6) holds for any

P ∈ P(X ). To this goal, we shall follow the following two
steps:

• Following [29], we argue that for any Markov kernel K,
we have

η(K) ≤ sup
x,x′∈X

H2(x, x′)

[
1− 1

4
H2(x, x′)

]
, (10)

where H2(x, x′) := H2(K(·|x),K(·|x′)) is the squared
Hellinger distance between K(·|x) and K(·|x′).

• We then show that for any ε-LDP mechanism K : X →
P(Y) and x, x′ ∈ X , we have

H2(x, x′) ≤ 2
(eε/2 − 1)2(1− e−ε)

eε − e−ε
. (11)

Note that the squared Hellinger distance takes values in
[0, 2] and the mapping t 7→ t(1 − 1

4 t) is increasing on
[0, 2]. Thus, plugging (11) into (10) leads to an upper
bound on η(K), which is in fact the desired result η(K) ≤
Υ2
ε.

The detailed proof will be given in the longer version.

It is worth noting that the upper bound given in this theorem
holds for any input distribution P and ε-LDP mechanism K.
To assess the tightness of this result, we consider next the
well-known randomized response mechanism.

Example 1. Let P = Bernoulli( 1
2 ) and K = BSC( 1

1+eε ). It can
be verified that this channel, often called randomized-response
mechanism [4], is ε-LDP. Fig. 2 presents the gap in the upper
bound given in Theorem 1, i.e., Υ2

εD(P‖Q) − D(PK‖QK)
for Q = Bernoulli(0.6). According to this plot, for this simple
mechanism, this gap is smaller than 0.03 for any value of
ε ≥ 0.
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Fig. 2. The gap in the upper bound given in Theorem 1 for P =
Bernoulli( 1

2
), Q = Bernoulli(0.6), and K being the binary symmetric

channel with crossover probability 1
1+eε

.

Combining Theorem 1 with (5), we obtain the following
proposition.

Proposition 1. Let P be a distribution in P(X ) and K be an
ε-LDP mechanism. If the simulation of PUV using P ⊗ K is
possible, then

s(U, V ) ≤ Υ2
ε,

where Υε was defined in (7).

We now instantiate this result for a specific joint distribution
PUV .

Corollary 1. Let P be a distribution in P(X ) and K be an
ε-LDP mechanism. If the simulation of DSBS(ρ) using P ⊗K
is possible, then

ρ ≤ Υε.

Proof. It is well-known that the hypercontractivity coefficient
DSBS(ρ) is equal to ρ2 [9]. The desired result then follows
by plugging s(U ;V ) = ρ2 into Proposition 1.

It is worth mentioning that the upper bound for ρ given
in the above corollary is tight. That is, there exist an ε-
LDP mechanism K and distribution P in P(X ) such that
the simulation of DSBS(ρ) using P ⊗ K is possible if and
only if ρ ≤ Υε. To observe this, let PXY = DSBS(Υε),
that can be equivalently expressed as P ⊗ K where P =
Bernoulli( 1

2 ) and K = BSC( 1
1+eε ). Note that, as already

mentioned in Example 1, K is an ε-LDP mechanism. The
celebrated Witsenhausen’s result in [26] indicates that the
simulation of DSBS(ρ) using DSBS(Υε) is impossible when
ρ > Υε. Moreover, the simulation is possible if ρ ≤ Υε: Alice
releases X1 the first bit of her observation and Bob releases a
suitably noisy copy of Y1. Thus, the simulation of DSBS(ρ)
using DSBS(Υε) is possible if and only if ρ ≤ Υε. This in
turn implies that the maximum ρ such that the simulation of
DSBS(ρ) using P ⊗ K for any P ∈ P(X ) and K ∈ Qε is
possible is indeed equal to Υε.

We end this section by a remark that Proposition 1 can
give rise to impossibility results for the private simulation of
a wide range of joint distributions. In particular, if the hy-
percontractivity coefficient of PUV can be either computed in
closed-form or lower-bounded, then Proposition 1 can be used
to characterize an impossibility result. The hypercontractivity
coefficient can be expressed in closed-form, for instance, for
binary symmetric channel with non-uniform input, Z-channel,
binary erasure channel with uniform input. Moreover, it is
known to be lower bounded for general joint distributions by
the Rényi maximal correlation [30], which is rather straight-
forward to compute or approximate for discrete distributions.1

IV. AN OPERATIONAL INTERPRETATION FOR LOCAL
DIFFERENTIAL PRIVACY

In this section, we exploit Theorem 1 to give a new
interpretation of the privacy guarantee provided by the local
differential privacy constraint. To expound our result, we need
the following definition.

Definition 4. Given a pair of random variables (A,B), the
advantage of reconstructing A given B is given by

Adv(A|B) := max
g:B→A

Pr(A = g(B))−max
a∈A

PA(a),

if A is a discrete random variable and

Adv(A|B) := 1− ming:B→A E[|A− g(B)|2]

var(A)
,

if A is an R-valued continuous random variable, where var(A)
denotes the variance of A.

We remark that maxg:B→A Pr(A = g(B)) is usually
called the probability of correctly guessing A given B and
ming:B→A E[|A−g(B)|2] is often referred to as the minimum
mean-squared error (MMSE) in estimating A given observa-
tion B. It is instructive to note that Adv(A|B) in fact quantifies
the advantage of the observation B in reconstructing A (i.e.,
guessing or estimating A depending on the alphabet A). In
other words, Adv(A|B) = 0 occurs if B does not contribute
to reconstructing A at all, that is, A and B are independent.
Similarly, if Adv(A|B) is small, then it is nearly the same to
reconstruct A with or without B.

Notice that any ε-LDP mechanism with ε = 0 generates
Y that is statistically independent of its input X , and thus
Adv(f(X)|Y ) = 0 for any deterministic function f . For any
reasonably small ε > 0, it is well expected that Adv(f(X)|Y )
be small as well. However, there has not been any precise
estimate of how small it is. Next lemma addresses this issue
by presenting an upper bound on Adv(f(X)|Y ) in terms of
ε.

Lemma 1. Let X and Y be the input and output of an ε-LDP
mechanism K, respectively. Then, we have

Adv(f(X)|Y ) ≤ Υε,

1A simple proof of the fact that Rényi maximal correlation lower bounds
hypercontractivity coefficient can be found in [14].



for any deterministic function f , where Υε was defined in (7).

In light of this lemma, Adv(f(X)|Y ) is at most linear in ε
for sufficiently small ε > 0 for any deterministic function f .

Proof sketch. First, assume that X is discrete. It was shown
in [16, Theorem 9] that Adv(f(X)|Y ) ≤ ρm(X;Y ), where
ρm(X;Y ) is the Rényi’s maximal correlation between X and
Y , defined as

ρm(X;Y ) := sup
f,g

ρ(f(X), g(Y )),

where the supremum is taken over all measurable real-valued
functions f and g on X and Y , respectively, and ρ(·, ·) denotes
the Pearson correlation. It is known that ρ2m(X;Y ) ≤ s(X;Y )
[14, Theorem 4], and thus ρm(X;Y ) ≤ Υε if X and Y are
input and output of an ε-LDP mechanism, respectively. For
continuous X , we invoke [31, Theorem 1] to show MMSE in
estimating f(X) given Y is lower bounded by var(f(X))(1−
ρ2m(X;Y )), from which the result follows.
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