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Abstract—Low-density parity-check codes are widely used
in communication systems. To meet the high throughput and
energy efficiency requirements of current and future systems,
it is desirable to further simplify the decoder. Quantized min-
sum (MS) decoders are of particular interest for their low
implementation complexity, which can be further reduced by
computing a single minimum (SM) during check node update,
instead of two. However, this simplification can lead to poor
decoding performance unless it is carefully incorporated. In this
paper, we formalize a general optimization problem for SM
decoding, and propose search heuristics to solve it. In addition,
we provide density evolution (DE) equations for the first two
decoding iterations that properly take into account the lack of
extrinsic update rule, and show that this DE result can be used
to obtain good solutions to the SM optimization problem with
low computational complexity.

I. INTRODUCTION

As communication speeds increase and data transmission
channels become more complex, encoding transmissions with
error correction codes becomes increasingly important. Low-
density parity-check (LDPC) codes [1] are used in many
current communication networks, including Ethernet, WiFi
and 5G, and are being considered for use in impending 6G
networks [2]. There already exist limitations in hardware in
reaching higher 5G transmission speeds [3]. The peak data
rate proposed for 6G networks will be 1 Tbps, 50 times that
of existing 5G networks [4]. Thus, there is a need for more
efficient algorithms and hardware architectures.

A possible way to improve the efficiency of a min-sum
(MS) LDPC decoder, first proposed in [5], is to introduce
an approximation in the check node update that consists of
computing only a single global minimum value, instead of two
minimum values as required by the extrinsic message passing
rule of the sum-product algorithm. The results presented in
[5] suggest a single-minimum (SM) check node is approxi-
mately half the size of a standard min-sum check node, and
implementations of single-min approaches are becoming more
visible in literature [6]. However, these improvements come
at the cost of performance, as the emulation of the second
minimum potentially introduces errors.

An MS decoder will find both the global minimum of
incoming messages and a second minimum excluding the
global minimum message, while a single-min decoder em-
ulates this second minimum using a correction factor and
the first minimum. This approach was implemented in [7]–
[9], with a configurable SM offset which was shown to
outperform the algorithm introduced in [5] and approximate

the performance of a min-sum decoder. The work presented in
[10] further improves on the performance of SM approaches
by incorporating a scaled SM offset dependant on iteration
number. Reference [11] applies these ideas to offset min-sum
decoding, with a similar approach to weighting the SM offsets
as compared to [10]. The work in [11] notably includes offsets
varying not only by iteration number, but also by check node
degree.

While the methods presented in previous work consider SM
emulation using offset values, their offset optimizations are
done over a more limited solution space, and they do not
systematically optimize the message quantization parameters.
In this paper, we introduce new methods of SM offset opti-
mization for single-min decoders. We begin by formulating
a general problem for optimizing SM offsets, to which we
apply stochastic search methods. A new top-level heuristic
for applying these search methods, referred to as “Windowed
Search,” is outlined. The algorithm attempts to account for
dependencies by optimizing SM offsets within a window
of several iterations, then advancing the window through
successive iterations. In parallel, we propose an analytical
method for optimizing the single-min offset for the first two
decoding iterations using density evolution. To the best of our
knowledge, density evolution has not been applied to single-
min decoding schemes. The main advantage of this method
is the improved computational efficiency when compared to
Monte Carlo (MC)-based methods.

The rest of this paper is organized as follows: Section II
reviews min-sum and SM decoding. Section III presents
novel SM offset optimization methods. Section IV presents an
overview of density evolution (DE) analysis for MS and SM
decoding, and proposes optimization methods for SM decoders
using DE. Section V presents the performance analyses of
fixed and variable-offset SM decoders compared to conven-
tional MS decoders, including the DE-based optimized SM
decoder. Section VI concludes the paper.

II. SYSTEM DESCRIPTION

We consider binary phase-shift keying (BPSK) modulated
data transmitted over an additive white Gaussian noise chan-
nel. After encoding, the 𝑖th bit is modulated and symbol 𝑥𝑖
is transmitted. The received signal is 𝑦𝑖 = 𝑥𝑖 + 𝑤𝑖 , where
𝑤𝑖 is the noise term of variance 𝜎2. The decoder receives
a quantized channel log-likelihood ratio (LLR) 𝐿𝑖 of the 𝑖th

coded bit, expressed as 𝐿𝑖 = sat𝑄
⌊
2𝛼𝑦𝑖/𝜎2 + 1/2

⌋
, where 𝛼

is a constant scaling factor (referred to as LLR scaling factor),



⌊.⌋ is the floor operator and sat𝑄 is a saturation operator that
ensures that 𝐿𝑖 ∈ [−𝑄,𝑄], 𝑄 ∈ N∗ being the maximum LLR
magnitude.

A. Message passing algorithm

Decoding is based on the message-passing algorithm [12],
where messages are iteratively passed between variable node
(VN) and check node (CN) neighbors. The message value sent
from the 𝑖th variable node to the 𝑗 th check node at iteration ℓ

is here formalized as 𝜆 (ℓ)
𝑖→ 𝑗

, and 𝛾
(ℓ)
𝑗→𝑖

is the message sent from
the CN at index 𝑗 to the VN at index 𝑖 at decoding iteration
ℓ. In addition, V𝑗 is the set of VN indices connected to CN
𝑗 and C𝑖 is the set of CN indices connected to VN 𝑖. The
variable-to-check (V2C) 𝜆-update rule for a given 𝑖 → 𝑗 edge
is formulated as

𝜆
(ℓ)
𝑖→ 𝑗

= 𝐿𝑖 +
∑︁

𝑘∈C𝑖\{𝑘 }
𝛾
(ℓ)
𝑗→𝑘

. (1)

The initial check-to-variable (C2V) message is given by
𝛾
(0)
𝑗→𝑖

= 0. Defining 𝑓 (.) as the C2V 𝛾-update rule function,
we have 𝛾

(ℓ)
𝑗→𝑖

= 𝑓
(
𝝀(ℓ−1)
𝒆,𝒊→𝒋

)
, with 𝝀(ℓ−1)

𝒆,𝒊→𝒋 = [𝜆 (ℓ−1)
𝑖→𝑘

]∀𝑘∈V𝑗\{ 𝑗 }
corresponding to the vector composed of all 𝜆-messages
connected to CN index 𝑗 , excluding the extrinsic message
(edge 𝑖 → 𝑗). Note that the subscript 𝑒 here refers to extrinsic
message exclusion. Finally, 𝑖th bit-decision is performed by
evaluating 𝔰(𝜆 (ℓ)

𝑖→ 𝑗
+ 𝛾

(ℓ)
𝑗→𝑖

), 𝔰(.) being the signum function.

B. Min-sum approximation

The 𝛾-update rule 𝑓 (.) can be simplified for resource-
efficient implementations. The 𝛾-message magnitude is ap-
proximated by taking the minimum magnitude from the in-
coming 𝜆-messages. Decoders that use this approximation are
referred to as min-sum (MS) decoders [13]. A correction factor
can be applied to the message magnitude, such as an offset
𝛽 ∈ N or normalization term 𝜂 ∈ R∗+, for a non-negligible
performance improvement. Applied to a given message vector
𝝀, the 𝛾-update function takes the form

𝑓 (𝝀) = 𝜂 ×
⌊

max
(

min |𝝀 | − 𝛽, 0
)
×

∏
𝜆∈𝝀

𝔰(𝜆)
⌋

(2)

Most hardware architectures update messages CN-by-CN,
using a dedicated CN processor. In this processor, the 𝛾-update
operation is efficiently implemented using a component that
computes the 2 minimum values among 𝜆-message inputs
using several cascaded comparator blocks. This remains the
most computationally complex block in an MS decoder.

C. Single-Min approximation

The 𝛾-update function can be further simplified by only
computing one minimum magnitude per check node, as
proposed in [5]. This is equivalent to violating the extrin-
sic exclusion rule during the message update: 𝛾

(ℓ)
𝑒, 𝑗→𝑖

=

𝔰
(
𝜆
(ℓ−1)
𝑖→ 𝑗

)
𝑓
(
𝝀(ℓ−1)
𝒆, 𝒊→𝒋

)
, with 𝝀(ℓ−1)

𝒆, 𝒊→𝒋 = [𝜆 (ℓ−1)
𝑖→𝑘

]∀𝑘∈V𝑗
. The sub-

script 𝑒 here refers to the inclusion of extrinsic information
in the message update function. As a result, the number of
cascaded comparators is divided by 2 in the check node

processing unit, reducing its complexity and propagation delay
by half. However, these improvements come at the cost of
degraded error-correction performance. To reduce the perfor-
mance gap, [7], [8], [10] propose an emulation of the second
minimum magnitude by adding a correction factor in the form
of an offset that may vary during the decoding procedure.
The most general approach is to affect an offset 𝜔 (ℓ)

𝑖, 𝑗
, referred

to as an SM offset, for an edge 𝑖 → 𝑗 and iteration ℓ. The
emulation of the second minimum occurs when the minimum
V2C message magnitude is extrinsic: |𝜆 (ℓ−1)

𝑖→ 𝑗
| < |𝛾 (ℓ)

�̄�, 𝑗→𝑖
|,

𝛾
(ℓ)
�̄�, 𝑗→𝑖

being the message obtained using (2) without applying
correction factors. Thus, we have

|𝛾 (ℓ)
𝑒, 𝑗→𝑖

| =


min
(
𝜂

⌊
|𝜆 (ℓ−1)

𝑖→ 𝑗
| + 𝜔

(ℓ)
𝑖, 𝑗

⌋
, 𝑄

)
|𝜆 (ℓ−1)

𝑖→ 𝑗
| < |𝛾 (ℓ)

�̄�, 𝑗→𝑖
|

max
(
𝜂

⌊
|𝛾 (ℓ)

�̄�, 𝑗→𝑖
| − 𝛽

⌋
, 0

)
otherwise

,

(3)

and 𝛾
(ℓ)
𝑒, 𝑗→𝑖

= 𝔰
(
𝛾
(ℓ)
�̄�, 𝑗→𝑖

)
× |𝛾 (ℓ)

𝑒, 𝑗→𝑖
|. The resulting message

magnitude needs to be saturated to the value 𝑄 if it exceed
this value.

III. SM OFFSET OPTIMIZATION

Little attention has been paid in the literature as to how SM
offsets may be systematically optimized. We propose a more
general formulation of the offset optimization problem, as well
as solutions using novel techniques.

A. Problem formulation
Let there be a matrix of positive integer SM offsets 𝛀 of

size 𝑛edge × ℓmax, where 𝑛edge =
∑

𝑗 |V𝑗 | is the number of
edges in the Tanner graph and ℓmax is the maximum number
of iterations supported by the decoder. Each matrix entry
corresponds to an SM offset 𝜔 (ℓ)

𝑖, 𝑗
applied at a specific decoder

iteration ℓ ∈ [1, ℓmax] and edge 𝑗 → 𝑖,∀ 𝑗 , 𝑖 ∈ V𝑗 . We
wish to find the matrix 𝛀 such that bit-error rate (BER)
is minimized. Additionally, both the normalization factor 𝜂

and LLR scaling factor 𝛼, real-valued parameters, need to
be optimized. Let the (𝜂, 𝛼,𝛀) tuple represent a particular
choice of decoder parameters. Correction factors 𝜂, 𝛼 and
offset matrix entries 𝜔 (ℓ)

𝑖, 𝑗
have for maximum values 𝜂max, 𝛼max

and 𝜔max. The optimal parameters (𝜂★, 𝛼★,𝛀★) that minimize
the BER performance 𝐵(𝜂, 𝛼,𝛀, 𝜁) of the SM decoder at
𝐸𝑏/𝑁𝑜 = 𝜁 are given by solving

(𝜂★, 𝛼★,𝛀★) = arg min
(𝜂,𝛼,𝛀)

𝐵(𝜂, 𝛼,𝛀, 𝜁). (4)

The BER 𝐵(𝜂, 𝛼,𝛀, 𝜁) can be estimated through MC simula-
tion. However, problem (4) is difficult to solve with reasonable
computational complexity since it is non-convex and the
solution space is extremely large. In addition, MC simulation
requires extensive simulation times. Hence, the search space
must be reduced. One solution is to constrain the offset matrix
𝛀 using one of three approaches: i) similarly to [7], [8], all
offsets can be set to a single scalar value (𝜔 (ℓ)

𝑖, 𝑗
= 𝜔), ii) the

offset values only vary with the iteration index (𝜔 (ℓ)
𝑖, 𝑗

= 𝜔 (ℓ) )
or iii) with the edge index (𝜔 (ℓ)

𝑖, 𝑗
= 𝜔𝑖, 𝑗 ).



Approach (iii) can be simplified by grouping edges into 𝑁𝐺

groups, then assigning the same offset value 𝜔𝑢 to all edges
belonging to the 𝑢th group for a given iteration ℓ. It is useful
in practice to design these groups based on the CN degree
dc 𝑗 = |V𝑗 | of each message, as proposed in [11]. If 𝐺𝑢 is
the set of CN degrees belonging to group 𝑢 (𝐺𝑢 ∩ 𝐺𝑢′ = ∅
if 𝑢 ≠ 𝑢′), then 𝜔

(ℓ)
𝑖, 𝑗

= 𝜔𝑢,∀𝑖 if dc 𝑗 ∈ 𝐺𝑢. Note that the
approach described in this paragraph can be combined with
(ii), i.e. offset values vary by both edge-group and iteration
index. Then, 𝛀 can be equivalently represented as an 𝑁𝐺×ℓmax
matrix denoted 𝛀𝑮 = [𝜔 (ℓ)

𝑢 ]. For the rest of this section, we
consider 𝛀𝑮 as the offset matrix to be optimized.

It is worth noting that it is not necessary to perform a full
search over the maximum iteration count intended for the SM
decoder. Instead, the findings gathered from a search over
fewer iterations can be extrapolated to design for the intended
iteration limit ℓmax. For approach ii) and iii), extrapolation can
be performed using linear regression, with saturation at zero if
extrapolated offsets take negative values. To design 𝛀𝑮, two-
dimensional extrapolation can be performed using a modified
Akima method [14], derived from cubic interpolation.

B. Top-level optimization using coordinate descent

To further simplify the search space for optimizing
(𝜂, 𝛼,𝛀𝑮), we propose optimizing these parameters through
coordinate descent (CD) [15]. CD allows optimization to target
each parameter separately; the remaining parameters are fixed
while a search is performed to find the best BER-performing
value for the targeted parameter, as shown in the equations
below

𝛀★
𝑮 = arg min

𝛀𝑮

𝐵(𝜂★, 𝛼★,𝛀𝑮), (5)

𝜂★ = arg min
𝜂

𝐵(𝜂, 𝛼★,𝛀★
𝑮), (6)

𝛼★ = arg min
𝛼

𝐵(𝜂★, 𝛼,𝛀★
𝑮). (7)

The above equations are applied in a loop over 𝐼 iterations
to improve the solution. For (6) and (7), a single-variable
minimizer tool may be used, as these values are scalars
with definite bounds. The minimization algorithm is based
on a golden section search and parabolic interpolation, with
tolerance value 10−4 [16], [17]. Problem (5) is more complex;
methods to solve it will be described in further detail in
Section III-C and Section IV.

An initial solution must be identified for all parameters
before performing CD. We observed there is little difference in
CD-optimized 𝛼 and 𝜂 between MS decoding and fixed offset
SM decoding. Therefore, we propose to first find initial values
for 𝛼 and 𝜂 using CD on (6) and (7), with BER obtained
through MS decoding (variable 𝛀𝑮 is excluded). We then
move to the SM decoder to set the initial value of 𝛀𝑮. For
simplicity, we consider that all coefficients of 𝛀𝑮 are fixed to
𝜔, such that 𝜔

(ℓ)
𝑢 = 𝜔. This constraint applies only for this

initial step. Then, 𝜔 is obtained by performing CD on (5)–(7).
This allows 𝛼 and 𝜂 values to be further optimized.
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Fig. 1. An example of an iteration of the generic windowed search, evaluated
for 𝑝 = 1.

C. SM offset optimization using windowed search

SM decoding operations involve dependencies that allow
the offset at one iteration to change the behavior of later
iterations. This can be explained by the fact that messages
become correlated over successive iterations due to the extrin-
sic exclusion principle being violated, as demonstrated later
in Section IV-C. Therefore, problem (5) is not convex, and
unlike MS decoding, offsets cannot be optimized on a per-
iteration basis. We propose introducing a top-level heuristic
that incorporates memory from previous decoder iterations to
optimize subsequent ones, which we refer to as window search
algorithm (WSA).

We denote as 𝛀𝑮 [ℓ] the offset matrix of the ℓ ≤ ℓmax
first iterations (size 𝑁𝐺 × ℓ). Defining a window length 𝐿, we
propose finding 𝛀𝑮 = 𝛀𝑮 [ℓmax] by successively optimizing
𝛀𝑮 [ℓ] from ℓ = 𝐿 to ℓ = ℓmax with step 𝑝 ∈ [1, 𝐿].
During each step, the 𝐿 last columns of 𝛀𝑮 [ℓ], correspond-
ing to a submatrix 𝑾 of size 𝑁𝐺 × 𝐿, are optimized by
stochastic search. Meanwhile, the remaining coefficients are
kept constant during the optimization process. The resulting
optimized offset matrix is denoted 𝛀★

𝑮 [ℓ]. By noting that
𝛀𝑮 [ℓ] = [𝛀★

𝑮 [ℓ − 𝐿],𝑾], 𝛀★
𝑮 [ℓ] can be obtained by solving

the following optimization problem:

𝑾★ = arg min
𝑾

𝐵(𝜂★, 𝛼★, [𝛀★
𝑮 [ℓ − 𝐿],𝑾]), (8)

and setting 𝛀★
𝑮 [ℓ] = [𝛀★

𝑮 [ℓ − 𝐿],𝑾★]. The search is per-
formed using a genetic algorithm, or, when 𝐿 × 𝑁𝐺 is small,
through exhaustive search. Then, ℓ is incremented by 𝑝, and
the next offset matrix 𝛀𝑮 [ℓ] is optimized through the same
procedure. This process repeats until ℓ = ℓmax. Figure 1 depicts
an iteration of the search for 𝑝 = 1.

IV. OPTIMIZATION USING DENSITY EVOLUTION

The main drawback of MC-based searches outlined in the
previous section is their long simulation time. In the following
section, we investigate a faster, analytical approach for solving
(5) using DE.

A. DE for MS Decoding

DE, first proposed for sum-product decoding in [18], is
an analysis tool that uses probabilistic properties of belief



propagation to predict the behavior of a decoder at each
iteration. If we assume that a code is free of dependencies
introduced by cycles in the Tanner graph, we can accurately
predict the performance of a decoder at each iteration by
evolving the probability density of the channel output. The
result given by this analysis assumes that the LDPC code
length tends to infinity.

The channel LLR cumulative distribution function (CDF),
denoted Φ

(0)
𝜆

(𝑘), 𝑘 ∈ [−𝑄,𝑄], is given by

Φ
(0)
𝜆

(𝑘) = 1
2
+ 1
√

4𝜎2
erf

((
𝑘 + 1

2

) 𝜎2

𝛼
− 1

)
, (9)

where erf(𝑥) = 2/
√
𝜋
∫ 𝑥

0 exp [−𝑡2]𝑑𝑡 is the Gauss error func-
tion. The resulting probability-mass function (PMF) is denoted
𝑃
(0)
𝜆

(𝑘) or 𝑷 (0)
𝝀 = [𝑃 (0)

𝜆
(−𝑄), ..., 𝑃 (0)

𝜆
(𝑄)] in vector format.

The density of V2C messages at iteration ℓ is given by

𝑃
(ℓ)
𝜆

(𝑘) =
( [
⊛
𝑑𝑣−1

𝑷 (ℓ)
𝜸

]
⊛ 𝑷 (0)

𝝀

)
(𝑘) , (10)

where 𝑷 (ℓ)
𝜸 = [𝑃 (ℓ)

𝛾 (−𝑄), ..., 𝑃 (ℓ)
𝛾 (𝑄)] is the C2V message

PMF vector and ⊛𝑛 operator is a 𝑛-fold convolution on a
vector 𝑿 with itself. Finally, the PMF of the C2V message is
defined as [19]

𝑃
(ℓ)
𝛾 (𝑘) =


Φ+ (𝑘) −Φ+ (𝑘 + 1), 𝑘 > 0

1 −
(
1 − 𝑃

(ℓ)
𝜆

(0)
)𝑑𝑐−1

, 𝑘 = 0
Φ− (𝑘) −Φ− (𝑘 − 1)), 𝑘 < 0

(11)

where Φ+ (𝑘) and Φ− (𝑘) are given by

Φ+ (𝑘) =
∑︁
𝑝 even

(
𝑑𝑐 − 1

𝑝

)
𝐴𝑝
− (𝑘)𝐴

𝑑𝑐−1−𝑝
+ (𝑘), (12)

Φ− (𝑘) =
∑︁
𝑝 odd

(
𝑑𝑐 − 1

𝑝

)
𝐴𝑝
− (−𝑘)𝐴

𝑑𝑐−1−𝑝
+ (−𝑘), (13)

with 𝐴− and 𝐴+ are respectively the complementary CDF
(CCDF) of the negative and positive values of the saturated
V2C messages at iteration ℓ [19]. To simplify presentation, we
present the equations for single-edge-type codes, but it is also
possible to develop equations for multi-edge-type codes.

B. Proposed DE optimization method

Instead of directly solving (5), we propose to find the offset
𝜔

(ℓ)
𝑖, 𝑗

that minimizes the mean square error (MSE) 𝜖 (𝜔 (ℓ)
𝑖, 𝑗

)
between the C2V messages obtained respectively through the
SM and MS message update rules, for a given edge 𝑖 → 𝑗

and iteration ℓ. This translates to the following optimization
problem:

arg min
𝜔

(ℓ)
𝑖, 𝑗

𝜖 (𝜔 (ℓ)
𝑖, 𝑗

) = arg min
𝜔

(ℓ)
𝑖, 𝑗

E
���𝛾 (ℓ)

𝑒, 𝑗→𝑖
− 𝛾

(ℓ)
�̄�, 𝑗→𝑖

���2 . (14)

This method does not guarantee finding the optimal solution
of problem (5), but its main advantage is that offsets can be
independently optimized for each edge, and, more importantly,

analytical methods can be applied to solve this problem.
Recalling that the SM C2V message update rule can be
formulated as in (3), the MSE term can be expressed as

𝜖 (𝜔 (ℓ)
𝑖, 𝑗

) =
∑︁
(𝑞,𝑣)
|𝑞 |< |𝑣 |

(
𝜔

(ℓ)
𝑖, 𝑗

+ |𝑞 | − |𝑣 |
)2

𝑃

(
𝜆
(ℓ−1)
𝑖→ 𝑗

= 𝑞 ∩ 𝛾
(ℓ)
�̄�, 𝑗→𝑖

= 𝑣

)
︸                                ︷︷                                ︸

𝜃
(ℓ)
𝑖, 𝑗

(𝑞,𝑣)

(15)

with (𝑞, 𝑣) ∈ [−𝑄,𝑄]2 and 𝜃
(ℓ)
𝑖, 𝑗

(𝑞, 𝑣) being the joint proba-
bility mass function of the (𝜆 (ℓ−1)

𝑖→ 𝑗
, 𝛾

(ℓ)
�̄�, 𝑗→𝑖

) random variables.
If these variables are independent, we have 𝜃

(ℓ)
𝑖, 𝑗

(𝑞, 𝑣) =

𝑃
(ℓ−1)
𝜆

(𝑞)×𝑃 (ℓ)
𝛾�̄� (𝑣). The message dependencies will be further

discussed in the next sub-section. Problem (14) is convex,
having solution:

𝑑𝜖 (�̄� (ℓ)
𝑖, 𝑗

)

𝑑�̄�
(ℓ)
𝑖, 𝑗

= 2
∑︁
(𝑞,𝑣)
|𝑞 |< |𝑣 |

(
�̄�

(ℓ)
𝑖, 𝑗

+ |𝑞 | − |𝑣 |
)
𝜃
(ℓ)
𝑖, 𝑗

(𝑞, 𝑣) = 0, (16)

=⇒ �̄�
(ℓ)
𝑖, 𝑗

=

∑
(𝑞,𝑣)
|𝑞 |< |𝑣 |

(
|𝑣 | − |𝑞 |

)
𝜃
(ℓ)
𝑖, 𝑗

(𝑞, 𝑣)∑
(𝑞,𝑣)
|𝑞 |< |𝑣 |

𝜃
(ℓ)
𝑖, 𝑗

(𝑞, 𝑣)
, (17)

where �̄�
(ℓ)
𝑖, 𝑗

is the optimal real-valued SM offset, and 𝜔
(ℓ)
𝑖, 𝑗

=

⌊�̄� (ℓ)
𝑖, 𝑗

+ 1/2⌋.
C. On the message dependencies

DE equations are derived based on the fact that all messages
are independent, a consequence of the extrinsic exclusion rule
and the cycle-free assumption. However, when the 𝛾-update
rule includes the extrinsic message, the message independence
assumption no longer holds. To illustrate this, we study how
messages propagate while being exchanged with the first VN
in a cycle-free code. For ease of notation, we consider that
this VN is connected to the first 𝑑𝑣 CNs in the Tanner graph.
By noting that, in a SM decoder without offset compensation,
𝛾
(ℓ)
𝑒, 𝑗→𝑖

= 𝔰(𝜆 (ℓ−1)
𝑖→ 𝑗

) × 𝑓 ( [𝜆 (ℓ−1)
𝑖→ 𝑗

, 𝛾
(ℓ)
�̄�, 𝑗→𝑖

]), we have

𝜆
(ℓ)
1→𝑖

= 𝐿1 +
𝑑𝑣∑︁
𝑗=1
𝑖≠ 𝑗

𝔰(𝜆 (ℓ−1)
1→ 𝑗

) 𝑓
(
[𝜆 (ℓ−1)

1→ 𝑗
, 𝛾

(ℓ)
�̄�, 𝑗→1]

)
︸                                ︷︷                                ︸

𝛾
(ℓ)
𝑒, 𝑗→1

. (18)

Through recursion, all 𝜆
(ℓ−1)
1→ 𝑗

variables are correlated with

𝛾
(ℓ−1)
�̄�, 𝑗→1 and 𝐿1. Consequently, the 𝛾

(ℓ)
𝑒, 𝑗→1 variables are not in-

dependent, and (10) cannot be applied to derive 𝑃
(ℓ)
𝜆

. Perform-
ing DE for the SM decoding algorithm requires conditioning
the message PMFs on each message value in the computation
tree. Since the number of possibilities grows exponentially
with ℓ, the number of message bits and check node degree,
this method is too computationally expensive.

D. Optimisation for the first iterations
When ℓ ∈ [1, 2], (11) is valid and can be used to derive

𝑃
(ℓ)
𝛾�̄� . Furthermore, with 𝜆

(1)
𝑖→ 𝑗

and 𝛾
(2)
�̄�,𝑖→ 𝑗

being independent,



𝜃𝑖, 𝑗 can be easily calculated and the optimal offsets can be
deduced for the first two iterations through (16). However,
𝑃
(1)
𝜆

cannot be obtained with (10) since 𝛾
(1)
𝑒, 𝑗→𝑖

is correlated
with 𝐿𝑖 , as shown in (18). Instead, we have

𝑃
(1)
𝜆

(𝑘) =
𝑄∑︁

𝑙=−𝑄
𝑃
(0)
𝜆

(𝑙)
(
⊛
𝑑𝑣−1

𝑷 (1)
𝜸𝒆 |𝑳

)
(𝑘 − 𝑙), (19)

where 𝑷 (1)
𝜸𝒆 |𝑳

= [𝑃 (1)
𝛾𝑒 |𝐿 (−𝑄 |𝑙), ... , 𝑃

(1)
𝛾𝑒 |𝐿 (𝑄 |𝑙)] is the PMF

vector of the SM C2V messages when the extrinsic message
value (corresponding to the channel LLR) is 𝑙:

𝑃
(1)
𝛾𝑒 |𝐿 (𝑘 |𝑙) =


𝑃
(1)
𝛾�̄� (𝑘) |𝑘 | ≤ |𝑙 |,∑𝑄

𝑚= |𝑙 |+1 𝑃
(1)
𝛾�̄�

(
𝔰(𝑘)𝑚

)
|𝑘 | = min

(
|𝑙 | + 𝜔

(ℓ)
𝑖, 𝑗

, 𝑄

)
,

0 otherwise.
(20)

Finally, the offset of the remaining iterations ℓ > 2 are ob-
tained by linearly extrapolating the real-valued offsets deduced
by the method described in this section for the first 2 iterations:
�̄�

(ℓ)
𝑖, 𝑗

=

(
�̄�

(2)
𝑖, 𝑗

− �̄�
(1)
𝑖, 𝑗

)
× (ℓ − 1) + �̄�

(1)
𝑖, 𝑗

.

V. SIMULATION RESULTS

A. Simulation setup

To validate the optimization methods, MC simulation are
performed to measure the error correction performance for two
different codes: i) a (1723,2048)-regular LDPC code from the
802.3an-2006 10 Gb/s Ethernet (10GE) standard [20]; ii) a 5th

generation cellular networks (5G) code with base graph index
1, code length 𝑁 = 16128, lifting size 𝑍 = 384 and code
rate 0.5238 [21]. Message values for the 10GE decoders are
quantized on 7 bits and passed on a flooding schedule for a
maximum of 40 iterations. For the 5G decoders, messages are
quantized on 6 bits, and passed on a flooding schedule for a
maximum of 40 iterations.

We propose comparing four offset optimization methods
for the SM decoder. All methods use CD as described in
Section III-B to optimize (𝜂, 𝛼,𝛀𝑮) parameters. These pa-
rameters, and subsequently the SM offset vectors determined
by the stochastic searches, are optimized for 𝛼max = 10,
𝜔max = 10 and 𝜂 ∈ [0.25, 0.5, 0.75, 1] to facilitate hardware
implementation. The differences between the methods resides
in how (5) is solved. The first method (M1), called fixed
offset, only optimizes a single offset 𝜔 following approach (i)
described in Section III-A. The second method (M2) optimizes
𝛀𝑮 following approach (iii), where (5) is solved using genetic
algorithm [22] for the regular 10GE code. For the 5G codes,
SM offsets are selected based on the extended variable weight
(EVW) method reported in [11], then (𝜂, 𝛼) are optimized
using CD. This method is referred to as CD-EVW in this paper.
The third method (M3) is the proposed WSA performed with
𝐿 = 3, 𝑝 = 1, with (8) solved through exhaustive search for
the 10GE code and genetic algorithm for the 5G code using
the following group setup: 𝐺1 = {3}, 𝐺2 = {6, 7, 8, 9, 10} and
𝐺3 = {19}. The last method (M4) corresponds to the DE-based
optimization proposed in Section IV.
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Fig. 2. Comparison of BER performance for SM decoders against optimized
MS for the 802.3an-2006 code. Triples in the legend correspond to (𝛼, 𝜂,
𝜔𝑆𝑀 ).

For the 10GE code, problem (5) is solved when considering
25 decoding iterations, for all methods. The remaining itera-
tions use the final SM offset gathered during the optimization
procedure. For the 5G code, WSA is applied for 10 decoding
iterations, and the modified Akima method was performed
to extrapolate SM offsets from 10 to 40. For all instances
where the genetic algorithm is used, the parameters are set
to a population of 200 candidates, including 10 elites, from
which 152 are selected for crossover.

B. Results for the 10GE code

Figure 2 shows the BER performance for the regular 10GE
code when considering the 4 offset optimization methods
for the SM decoder. BER results for the MS decoder are
also shown as reference. The legend indicates the optimal
parameters, optimized at 𝜁 = 3.8 dB for all methods, as
indicated by the red vertical line in the figure.

The results for the stochastic searches show that the differ-
ence in performance between optimized varying offset meth-
ods (M2) and (M3) is negligible. However, for 𝜁 > 4 dB, the
fixed offset method is outperformed by both (M2) and (M3),
with a gap of 0.1 dB observed at 10−5 BER. Concerning the
DE method (M4), we observe a performance loss compared to
other optimization methods. This is likely due to the fact that
only SM offsets of the first two iterations are optimized, while
we approximate the remaining ones by linear extrapolation.

We measured the execution times of each method on the
same computer (at 𝜁 = 3.8 dB), and obtained the following
results: (M1) 14min; (M2) 20h; (M3) 314h; (M4) 0.7s. The
DE method (M4) is by far the fastest method. Particularly,
the compute time is constant for any 𝜁 value, whereas MC
approaches require more simulation trials with decreasing
noise power. This opens the possibility to re-design the offsets
“on-the-fly”, when the decoding parameters change.

C. Results for the 5G code

Figure 3 depicts the BER of SM decoders for the 5G code.
For the MS decoder, we have 𝛽 = 1, applied at each iteration.
Parameters are optimized at the following 𝐸𝑏/𝑁𝑜 values: 𝜁 =

1.1 dB for the MS decoder (blue vertical line), 𝜁 = 2.8 dB for
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Fig. 3. Comparison of SM decoding methods against an MS decoder;
performed using a 5G code BG1 [N=16128, R=0.5238]. Triples in the legend
correspond to (𝛼, 𝜂, 𝜔𝑆𝑀 ).

the SM fixed offset method and 𝜁 = 2 dB for the CD-EVW,
WSA and DE-based methods.

There is a significant gain in error performance for varying
versus fixed offset SM decoding in the 5G code presented. The
SM offsets obtained with WSA outperforms the ones obtained
using CD-EVW by 0.1 − 0.2 dB in the Waterfall region.
Furthermore, contrary to the 10GE code, the DE analysis
method (M4) significantly outperforms both CD-EVW and
WSA. It can be explained by the fact that SM offsets are
optimized separately for each edge of the base graph. This
additional degree of freedom provides gains since the 5G code
has several edge types and CN/VN degrees. In addition, the
DE method has the lowest execution time.

VI. CONCLUSION

In this paper, we tackled the problem of optimizing second-
minimum emulation offset values for SM decoders. These
decoders require less hardware resources than typical MS
decoders, but their performance depends heavily on well-
optimized SM offsets. We first presented a general formu-
lation of the problem and proposed a simplification with the
coordinate descent algorithm. We then solved for offset values
by proposing two methods: 1) a Monte Carlo-based method
referred to as WSA 2) A DE-based analytical method. We
evaluate these proposed methods using two different codes (5G
and 10G Ethernet standards) and compare with existing opti-
mization methods. We show that, for the 5G code, large BER
gains are observed, particularly for the DE method, which
also requires less computation time. This method optimizes
the SM offsets for only the first two iterations, while the
remaining ones are extrapolated. Therefore, we believe that the
performance gap between MS and SM decoders can be further
reduced. This encourages further investigation to improve DE
analysis for SM decoders.
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